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Albert Eschenmoser:

The best minds in chemistry &
should move to origin of life = %3 ™
research! ‘

You will probably never know
how It happened, but we might
well agree upon how It could
have happened



The centrality of autocatalysis

Replication from a chemical point of view
always rests on autocatalysis

The basic form Is
A+X2>2A+Y

very important for biology

Much more general than DNA



Von Kiedrowski’s replicator




A crucial 1insight: Eigen’s paradox
(1971)

Early replication must have been error-
prone

Error threshold sets the limit of maximal
genome size to <100 nucleotides

Not enough for several genes
Unlinked genes will compete
Genome collapses
Resolution???




The error threshold:
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The maximal length of a genome is
Inversely proportional to the error rate:
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Molecular hypercycle (Eigen,
1971)

Catalysis of a catalytic
replication cycle: SECOND-
order autocatalysis!!!
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On the propagation of a conceptual error
concerning hypercycles and cooperation

Eéirs Szathmary '

"The three-membered oycle shown here esembles a yvpercyole as envisioned pEvioush but without yperbolic growtnd’

t al. show that variants of such | fragments can assemble and act on one another o form cooperative self-assembly
5

ry much like the proposed hype e in which ribozyme 1 aids assembly of ribozyme 2: 2 aids 3: and 3 aids 1°




An Interesting suggestion to
overcome the replicase problem
(Ellington)
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Parasites in the hypercycle (JMS)




Without a solution we would not
be here...
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A forgotten mechanism
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Gause’s Principle and the Effect of Resource Partitioning
on the Dynamical Coexistence of Replicating Templates

Andras Szilagyi'*?, Istvan Zachar’®, Eors Szathmary' >3~

« The dynamical theory of competing templates has not yet taken the
effect of sequences explicitly into account. One might think that
complementary sequences have very limited competition only.

» We show that, despite interesting sequence effects, competing template
replicators yield to Gause’s principle of competitive exclusion so that
the number of stably coexisting template species cannot exceed the
number of nucleotide species on which they grow, although one of the
findings is that plus and minus strands together count as one species.

« Thus up to four different templates/ribozymes can constitute the first
steps to an early, segmented genome: we suggest that other mechanisms
build on this baseline mechanism.



Sequence-dependent outcome of
competition
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In silico simulations reveal that
replicators with limited dispersal
evolve towards higher efficiency

and fidelity

Pater Szabd-*, Istvan Scheuring®, Tamas Czaran® & Edrs Szathmary"

Nature 420, 360-363 (2002).

Replicase > Other RNA
RNA




A cellular automaton simulation

» Reaction: template
replication

« Diffusion (Toffoli-
Margolus algorithm)
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Maximum as a function of
molecule length

 Target and
replicase
efficiency

« Copying fidelity
 Trade-off among

all three traits:
Worst case




Evolving population

« Molecules interact with their neighbours
« Have limited diffusion on the surface



“Stationary’ population
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A ‘metabolic’ system on the
surface (2000)
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Parasite on metabolism

e Parasites do not kill
the system

e Can be selected for
to perform useful
function




J. theor. Biol. (1992) 159, 99-109

Viral Sex, Levels of Selection, and the Origin of Life
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The stochastic corrector model
for compartmentation

Szathmary, E. &
Demeter L. (1987)
Group selection of early
replicators and the
origin of life. J. theor
Biol. 128, 463-486.

Grey, D., Hutson, V. &
Szathmary, E. (1995) A
re-examination of the
stochastic corrector
model. Proc. R. Soc.
Lond. B 262, 29-35.




An Interesting twist

Szilagyi et al. Biology Direct 2012, 7:38
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Early evolution of efficient enzymes and genome
organization
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Evolution of enzymes In a
biochemical pathway
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Evolution of waste production

direct flux
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...but only with chromosomes!

« Specific enzymes generate a high assortment load
» Generalist enzymes reduce this load

e« Chromosomes reduce the load and allow for the
evolution of highly specific enzymes



